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Capacity of the multilayer perceptron with discrete synaptic couplings
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We study the multilayer perceptron with N discrete synaptic couplings. As a typical discrete set of
values, we assume that synaptic couplings take 2L +1 values k /L (k =—L,...,L, L is an integer). Us-
ing the replica method, we study the space of solutions that implement prescribed P input-output rela-
tions. The property of the space of solutions is featured by two characteristic =P /N values; one is the
point a, where the Almeida-Thouless instability takes place and the other is the point ag where the en-
tropy S of the replica symmetry (RS) theory vanishes. When the number of hidden units X is infinity, we
find that the order of a,t and ag changes at L =4. For L >4, the replica symmetry has to be broken
with the finite entropy of solutions. For large L, we find that ag is proportional to (InL)*, where x is very
close to % The one-step replica symmetry breaking theory gives a smaller value for S than the RS
theory does, but the difference is very small. For K =3, we find that ag becomes larger than a,1r when
L >2. We also study numerically the space of solutions for K =3 using the least action algorithm
modified for discrete coupling J. We find that some drastic change of the space of solutions really takes
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place around a, .

PACS number(s): 87.10.+¢, 64.60.Cn

I. INTRODUCTION

Recently, many efforts have been made to study neural
networks by the statistical mechanics approach. Of par-
ticular interest is the mechanism by which many neurons
and synapses cooperate for macroscopic functions of
neural systems. Among many models, the perceptron
model is important, since it contains the basic concept of
parallel processing of large numbers of inputs [1]. The
simplest version of the perception is the single layer per-
ceptron described as follows. Each input signal S;
(i=1,2,...,N) is transmitted to the output unit
through the synaptic coupling J;,. The output S is given
by the sign function of the local field h =3 ;J;S;. Usual-
ly, we want to have prescribed outputs & for prescribed
inputs & (u=1,2,...,P). This is achieved by arranging
{J;} by some learning algorithm. Thus the problem is to
find the couplings which satisfy the relation

§6=sgn (D

27,85
J

for all u. The ratio a=P /N measures the number of pat-
terns that the perceptron can memorize. There is an
upper limit of a that allows the existence of solutions.
This upper limit a,, the critical capacity, is a fundamen-
tal quantity which features the ability of a machine and
has been studied mainly with geometrical arguments
[2,3].

A few years ago, Gardner introduced a statistical
mechanics approach to this problem [4]. In this ap-
proach we use the replica method [5] and treat the cou-
plings J; as spin variables, and patterns &% as quenched
random variables. Various modifications of the replica
formulation allow us to study various aspects of neural
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networks.

Recently, this method was applied to more complicat-
ed multilayer perceptrons, i.e., parity machines [6] and
committee machines [7,8]. These models have many hid-
den units which process the signals from input units and
transmit their states to the output unit. For committee
machines, the output S is given by sgn(3,,0,), where o,
is sgn(¥;J;;S;). Thus the problem is to find J;;, such that

K
2%1 ’

=1

278
j

£6=sgn

0,1 =sgn

for all u, where K is the number of the hidden units. This
is one of the simplest architectures that has hidden units.
However, information about these models mainly comes
from computer simulations. Also, it was pointed out that
the problem of finding couplings for given patterns is NP
complete [9]. In this respect, replica studies are
significant in that they evaluate the properties of the
machine.

According to [7], the behavior of the multilayer per-
ceptron strongly depends on the type of synaptic cou-
plings. First, the critical capacity a, for continuous J is
much larger than for Ising J. This feature is very
different from the single layer perceptron, in which a,
varies only from 0.83 to 2.0, from Ising to continuous J
[2,4,10]. We suspect that the ability of the multilayer
perceptron is much more sensitive to the amount of infor-
mation of each J;; than the single layer perceptron.
Second, in the continuous coupling, the replica symmetry
breaking (RSB) takes place even for a smaller than a,.
This means that the space of solutions is divided into
subregions above some a. On the contrary, in the Ising
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case, there is no RSB for a < a, and the behavior is simi-
lar to the single layer case.

In this paper we study a two layer perceptron, intro-
ducing discrete synaptic coupling J;;=k /L, where L is
an integer and integer k varies from —L to L. For the
single layer perceptron, the replica symmetry (RS) theory
for discrete coupling was studied in [11]. With discrete
synaptic coupling like this, we can study the crossover
from Ising-like to continuouslike behavior. We can also
study the number of solutions or the entropy of solutions
out of (2L + 1)V configurations. It has been shown in [7]
that, in the large K limit, the replica study is simplified
significantly and a, becomes infinity for continuous cou-
pling. Thus, for discrete coupling with small 1/L, we ex-
pect interesting behavior of a, in the large K limit.

Section II is devoted to reviewing the replica calcula-
tions. We also study the number of solutions by the an-
nealed approximation, which gives the upper bound of
a.. In Sec. III we discuss the solution of saddle point
equations in the large L limit. Section IV is devoted to
studying the numerical solution of RS and one-step RSB
saddle point equations. Some results of the simulations
for a small system are presented in Sec. V. Some com-
ments and discussions will be given in Sec. VI.

II. FORMULATIONS FOR K =1, 3, AND

A. Annealed approximation

One of the interesting features of discrete couplings is
how the number of solutions depends on L and the archi-
tecture of the machine. From the argument in Sec. I, we
expect that, in the single layer case, the a, does not
strongly depend on the mesh of coupling 1/L but does
strongly depend on 1/L in the two layer case, especially
for large K. To begin with, let us study the problem by

dX,dA,

<V)=f_wwfow HTCXP —iy X, A,
[ p

where we have used the § function 8(Mg)—3 jJé ). In
the saddle point approximation for large M, we obtain
E,=0and

gi=SJ*exp—E;J?/ S exp—E;J*=(L +1)/3L ,
J J

which is the average over the homogeneous distribution.
Thus we obtain

(Vy=L)PeL+1)y» (6)

for all odd K. Thus the entropy per synapse is given by
S=—aln2+In(2L +1). By demanding (V) =1, we can
find the upper bound of the critical capacity, a, =P,/
N=In(2L +1)/In2. This relation implies that the critical
capacity is proportional to the bit number of a coupling.
However, it is well known that for a single layer percept-
ron the set of patterns should be linear separable and

cos®x,, TT
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FIG. 1. Two layer perceptron with nonoverlapping input
units, which we discuss in this paper. The number of hidden
units is K. Each hidden unit has M input units. The total num-
ber of input synaptic couplings is N =MK.

the annealed approximation. In this paper, we concen-
trate on the nonoverlapping committee machine depicted
in Fig. 1, in which the input units are divided into K
groups of M input units and each hidden unit receives in-
puts from a corresponding group. £ are assumed to be
+1 with probability 3. The volume of the space of solu-

tions is given by
r=31I°9

(7} w
where 0(x ) is O for x <0, 1 for x =0, and

hu= 378 [VH . @
J

K
> sgnlh,) |, (3)

=1

If we set K =1, the expression reduces to the single layer
case. With the annealed approximation, i.e., the & aver-
age of ¥, we find

dEzd‘Lﬁ
i 2T

exp (M |E;gl+InS exp(—EJY) | |, (5)
J

a.<2.0 [2,4]. In the following sections, we will discuss
what happens for the two layer case by the replica
method.

B. Replica method

This section is devoted to studying a two layer percept-
ron by the replica method. We will follow the formula-
tion presented in [7]. The typical value of ¥V is given by
exp{In¥ ), where ( ) means the £ average. To evaluate
(InV'), we use the replica method,

(an)=lin%)<Lnn>—_—l . )

In the saddle point approximation, the constraint from
each pattern contributes independently to {(In¥V) if we
assume that the £% are independent of each other. How-
ever, hidden units couple strongly because of the con-
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straints (3¥,0,). This makes it difficult to study the each other and each hidden unit has different inputs,
problem for general K. An interesting finding in [7] is  P{hy;} becomes a product over / and u, which is given
that, when K — o, the expression for {InV) is quite by

simplified and becomes very similar to the single layer

case. Plhg =TI P(hy)
Let us briefly review the derivation of (In¥V') for K =1, ul
3, and «. It is convenient to express { V") by the distri- - a
bution function of local fields in the form % I} I;I ® [ 2"[] £ / VM ]>
(rry= f Ildh w IT0 ; sgn(hy) \Plhy) . 8)  pe average over £ induces couplings in the rephca
I na

space. Introducing overlaps among J, ie., an and qa,
Since we have assumed that the £/ are independent of  we have

J

H dy ﬁz
2w

I1é [Mqﬁ,— S I TT dgbp T1da - (10)
a j a<p a

(hﬁ,)Zfexp [izhﬂIYﬁz_%quszYﬁI_% S awavh
a a aF P

X3 II8 [Mqéﬁ- S5t

J a<B

A typical continuous coupling is achieved by the spherical constraint g/, =1. In our case, g’ will be determined by the
saddle point equation. The & functions are further replaced by the 1ntegra1 form with the integral variables E’, and F
In the saddle point approximation for large M, ¢/, qaﬂ, E!, and F! op are assumed to be the saddle point value whlch
gives the extremum of (an) The s1mplest assumption is the symmetric one among replica indices and hidden units.
Setting an 7,9 =q,, lE =E, and —zFaB =F, we obtain

1 (Vgt,—he)? dh?,
(vm)y= 1Dt | T16 2sgn(h",) IMexp |— = E —+—— lexpNG , (11)
I} f I #f a =1 N 94s—49 \/2‘#(qd—‘q)

where Dt =exp(—1¢2)/V 2 and

G=nEq,—in(n—1)gF+In [ Du| 3 exp |- 2E+FJ2+\/F uJ (12)

J
By introducing the integral form for the 6 function, we obtain
dX;dAg .
(Vn)_H fHDth f H exp —IZXaAa]H[exp(zXz)H(X
la
+exp(—iX;)H(—X,;)] |exp(NG) , (13)

where H(X)= [ ¢ exp(—1x?)dx /V2m and X#,=\/3tu,/ V'q—9q
To proceed further, we should specify the value of K. For K=1 and 3, the integrals of X and A}, are straightfor-
ward. Dropping indices u, the results for K =1 and 3 are given by

(InV/N)=aA+Eq,++qF+ [ Dulnf(RE+F,VFu), (14)
flx,y)=T exp —%J”—y] (15)
J
where
A= [DtInH(X) , (16)

with X =X, for K =1, and

3
AZI Il bty in(H,H,+H H,+H,H,—2H H,H;), (17)
1=1
for K =3, where H,=H (X,).

In the K — o limit, the nontrivial result is obtained if we assume X is order 1/ VK. This assumptlon allows us to
expand exp(£iX};) in (13). Picking up the terms up to K~ ! we get the summations 3,F;/V'K and 3,F?/K in the ex-
ponential, where F;=2H,;—1. To the largest order of K, we can replace the latter by Q = f F2Dt and the former by
V'Q T, where T obeys the Gaussian distribution with mean 0 and variance 1. In this way, the integral over K variables
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reduces to one variable, and we obtain A = fDT InH(X) with X=V'QT/V'1—Q, where Q =1—(2 /) arccos(q /94).

The replica symmetry breaking ansatz for an and F! op can be treated in the same way. For the one-step RSB, we as-
sume that the matrix qaﬁ has elements g, in diagonal blocks of size m Xm and elements g, among different blocks. Set-

ting F,in the same manner, we obtain

(an/N)=%fDTlnfDT,H(X)"’+Eqd+%[(l—m)q1F1+mq0F0]

+%fDu in [ Du, f(2E +F,,v/Fou+V/F,— Fou,", (18)
[
where 1
F=aC—7,
\/Q0T+\/Q1 Q0T; 19) Agy
Vi-o, 2E+F=aC'—— |
where Q,=1—(2/w)arccos(q,;/q;) and Qy=1 844 (22)
—(2/m)arccos(qq/q,). It is easy to write the one-step q,=C",
RSB expressions for K=1 and 3. If we set g;=1 and re- |
place J sum with J integral in (15), we obtain the expres- Ag;= "'ﬁ ,

sion for the spherical constraint case. The Almeida-
Thouless (AT) instability can be studied in the same way
as the spherical constraint case studied in [7], since the
fluctuations of ¢/, and E!, do not contribute to this insta-
bility [12].

III. STUDY OF THE SADDLE POINT EQUATIONS
IN THE SMALL g, —q AND LARGE L LIMIT

To obtain the solutions of the saddle point equation,
we should do some numerical works, which will be
presented in Sec. IV. In this section, we study the solu-
tion in the small g; —q and large L limit. In the ¢;—¢q
limit, we can take the singular part of the equations and
study the behavior of ag, which we believe is qualitative-
ly correct apart from this limit. Let us first study the RS
solution. The one-step RSB solution will be discussed in
Appendix B. The saddle point equation for RS is given
by

1 dH | 2 1
F=—— 2= :
1-Q H(X)? T ‘/qZ
E:—_I__LF’
2 q4
(20)
=fdu(J2) ,
q=fdu(J)2,
where
> - exp 2E+FJ2+\/F ul
(--y=-" (21)
S exp |— 2E+F12+\/F uJ
7

In Appendix A, we present the details of the evaluations
for small Aq; =g, —q and large L. The result is given by

where all C’s are constants without singularities. These
equations are derived under two assumptions. The first is
that (2E +F)/V'F does not strongly depend on Ag, and
tends to a limiting value r for Ag;,—0. The solution
(QE+F)/VF =V C'C"/C justifies this assumption.
The second is that the summation over J in (15) can be
approximated by the integral even if 2E +F becomes
large. To see if it is true, we should study the change of
the terms in (15) under the change J—J+1/L. If this
value (2E+F)/L ~V'F /L is small, this approximation
will be good. Solving the above equations, we obtain
a=C""/(C'V/Aq,). The a which gives (2E+F)/L ~1
is of the order of V'L, which is much larger than the
upper limit a,=In(2L +1)/In2. Thus, for a<a,, we
can work with the integral approximation.

Using these solutions, we obtain the entropy, i.e., the
value of {In¥V /N ) at the saddle point, given by

Sgs=—Ba?+InL , (23)

where B is a complicated function of r and g,, which is
given in Appendix A. Spg becomes O when
a=ag =VInL /B. Thus a s increases as L increases, but
it is much smaller than a, =In(2L +1)/In2.

In Appendix B, we studied the saddle point equation of
the one-step RSB. We found that the solution
ax1/v/q;—q, is consistent with the saddle point equa-
tion. As discussed in Appendix B, this result implies also
that Spep becomes zero at the point aggsg)<VInL. In
Sec. IV we present the numerical solution of the saddle
point equations and find that the ratio ag/V’ InL is near-
ly constant for rather small L but continues to increase
weakly as L increases. We will also find that the
difference of entropy between RS and RSB is quite small,
which implies ag ~ aggrgp)-

To finish this section, we should comment on the single
layer perceptron, i.e., K=1. In this case, Q is given by
q/q,. Repeating the same argument for the small Ag,
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limit, we find that F and 2E +F are proportional to
1/Aq2 and 1/Agq,, respectively. Thus a becomes a con-
stant for Ag;—0. This means that 2E +F diverges as a
tends to this value and the integral approximation for
f(x,y) becomes wrong. As we will see in Sec. IV, S of
the single layer perceptron rapidly becomes zero just
below a=2.0, which is the critical capacity of the con-
tinuous coupling.
IV. NUMERICAL STUDY
OF THE SADDLE POINT EQUATION

A. L dependence of a,t and ag

According to [7], the behavior of a multilayer percept-
ron strongly depends upon the type of coupling, that is,
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FIG. 2. L dependence of ag and a,t for (a) K=3 and (b)

for continuous J, a. is infinity and the AT instability
takes place for finite a, but for Ising J, a, is very close to
the single layer case and there is no AT instability for
a<a,.. In this section, we first study the L dependence of
two characteristic a’s. One is the point ag where Sgg
vanishes. This a is studied in Sec. III in the large L limit.
The other is the point a1 where the AT instability of the
RS solution takes place. a1 is determined by the equa-

tion

1—anKypy; =0, (24)
where yp and y; are given in Appendix C. If ag <a,r,
a,t is fictitious and we can identity ag=a,. If ag>a,r,
RSB takes place with positive entropy and we should
study the entropy of the RSB solution to find a,.

In Fig. 2, the L dependence of a,t and ag is presented
for K=3 and . At small L, their order reverses and the
RSB region appears for larger L. a,t of K=3 and o
tend to 1.6 and 2.72, respectively, for large L. These
values are slightly smaller than in the spherical constraint
case. On the other hand, ag increases rapidly as L in-
creases. ag for K =3 should have an upper limit, which
is not reached in the range of the studied L. Although ag
for large L is only an approximation of a,, it gives a good
idea about a, since, as discussed below, Sgqp is very close

to Sgs.-

To study the L dependence of ag, we present
ag/VInL and ag/InL for K= in Fig. 3. ag/VInL
seems to be nearly constant for small L. However, we
found that ag/VInL continues to increase very weakly
up to L =32, which is the maximum L we have studied.
This behavior is slightly different from the results ob-
tained in Sec. III. The discussion in Sec. III is based
upon the assumption that Ag, is very small. However,
we cannot control Ag,; at a~ag. As we will discuss in
Sec. IV B, Ag, is not so small for a ~ajg.

The behavior of entropy for K =1, 3, and « is present-
ed in Fig. 4 for L=8. It changes systematically, al-
though each line is obtained from different saddle point
equations. The point at which Sk becomes zero is
a=1.84, 2.83, and 3.40, respectively. The arrows in the
figure indicate the AT points. Above these points, we

30+ x
o 9
O o o © o o o O
x
2.01 x
x
x
y
1.00 ‘.IS ] 1'0 73

K=c. A for ag and O for a,t. The crossover from Ising-like
to continuous-like behavior takes place near L ~2 and 4, re-
spectively. The broken line is the upper bound of a, given by

a,=In(2L+1)/In2.

FIG. 3. L dependence of as/InL, X, and a5/VInL ,0. The
same data as in Fig. 2 are used. For L =32, @ is agsp,/VInL .
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FIG. 4. a dependence of entropy S derived by RS theory, for
L=8 and K=1, 3, and « from bottom. The broken line is
S,=—aln2+In17. The arrows indicate the points where the
AT instability takes place.

found that the RSB entropy is always smaller than that of
RS. However, the difference is too small to be presented
in the same figure. For K=, we have studied the
difference up to L =32 and the largest difference is of or-
der 1072 near the point Spgg=0. The value
ayrsp)/VInL for L =32 is shown by a dot in Fig. 3.

B. a dependence of order parameters

In Fig. 5 we present the a dependence of order param-
eters K=o and L =8. RSB takes place at a,t~2.72,
with g;=0.371 and ¢=0.227. For a<ag, the qualita-

051
(a)
044

031 =
024 T

0.4

1.07
(b)
m
051
00 . v
25 30 35

FIG. 5. a dependence of order parameters (a) 94,9;,90, and
(b) m=1—3 P2 for L=8 and K=«. RSB takes place at
a=a,r~2.72. m starts from 1 at a=a,1 and decreases rapid-
ly.
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tive behavior of the order parameters is very similar to
the spherical case [7]. For the wide range of a, the self-
overlap g, is very close to (L +1)/3L =0.375, which is
the average of J? over the homogeneous distribution. To
evaluate ag analytically in Sec. III, we assumed that Ag,
was small enough at Sy =0. However, the numerical re-
sults showed that Ag, is not so small for the RS solution,
i.e., g;=0.365 and ¢ =0.249 at a=3.4. We suppose that
this is the main reason why ag/V'InL depends upon L
weakly, even for large L. On the other hand, for RSB, we
found ¢,=0.356, ¢, =0.323, and ¢,=0.220 at a=3.4,
which gives a rather small g;—q,. Thus we expect that
the small g, —g; approximation is better for RSB than
for RS in this region. As commented upon in Sec. IV A,
Sgsp is slightly smaller than Sgg, giving smaller agggg).
This seems to suppress the L dependence of aggsg)/
V'InL for large L.

One interesting aspect is, as pointed out in [7], that the
parameter m starts from 1 at the AT point and decreases
rapidly. This is very different from the one-step RSB of
the infinite range spin glass model [13]. According to the
general theory of RSB [5,10], m is related to the weight of
the pure state P, by m =1—3 . P2. This relation and the
behavior of our m imply that, just after RSB takes place,
the space of the solution breaks into many pure states
with a small weight, but most of them become negligible
as a increases.

V. REPLICA STUDIES AND SIMULATIONS FOR K =3

In this section, we describe the simulations for small
systems. We concentrate on the K =3 case. The numeri-
cal study of the RSB phase is not easy because the space
of solutions has many subregions, which are properly de-
scribed by the overlap function [5]. The study of this
function is outside the scope of the present paper. Here
we want to observe some qualitative change of the space
of solutions around a 1.

Let us first review the replica studies for K =3. ag,
a,t, and Sig have been presented in Figs. 2 and 4. a,r
tends to 1.6, while ag continues to increase for the stud-
ied L. We have studied the L =8 case, which has a wide
region of RSB. In Fig. 6, the a dependence of the order
parameters is shown with the results of the simulations,
which we shall discuss below. At a,r, we found
q;~0.37 and g ~0.22 in the RS theory. This figure also
shows the one-step RSB solution denoted by O. Al-
though they are only qualitative because of the numerical
uncertainty, the behavior of the order parameters, includ-
ing m, is very similar to the K = o case.

The general approach in obtaining solution couplings
is by simulated annealing (SA). Taking the number of
wrong outputs as a cost function, we studied the system
by this method. However, we found that it is not efficient
in our case, especially when «a is close to the AT point;
usually, the cost function decreases to some small integer
value but takes an enormous amount of time to become
zero or does not become zero during the simulation time.
This is mainly because the cost function is a step func-
tion, and diffusion in the configuration space is very slow.

Another choice is the least action algorithm (LAA)
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FIG. 6. The results of replica calculation for K=3 and L =8,
and the results of simulations for K=3, L =8, and M=5. In
this case, replica theory implies a,r~1.6. In the simulations,
the number of samples, i.e., the number of sets of patterns, is 10
for P=38, 15, 23. For P=25 and 27, we studied 30 samples but
we did not obtain the solutions for 5 and 4 samples, respective-
ly. The error bar is the sample fluctuation. With 10° MC steps
and T=1/3.0, about 10°~10* configurations contribute to the
averages for P=27. The RSB solutions are given by 0. The
broken lines are to guide the eye.

modified for discrete J. In general, the least action algo-
rithm goes as follows [3,7]. First, we assume some initial
values for the couplings. Then we see the output of a pat-
tern v and, if it is right, go to the next pattern. If it is
wrong, we find the hidden unit /, which has the negative
local field with the smallest absolute value. Then, for this
unit /, we do the Hebb learning, i.e., J;; —~J); +1/vVM &
(j=1,2,...,M). However, when couplings are discrete,
change of this order is not allowed. If we adopted
(1/L)§j for the change instead of (1/vM )€7, it would
make the change of h;, much larger than 4, itself. We
suppose that natural modification is to introduce the sto-
chastic processes, that is, we choose J;; with probability
1/VM and Jyy—J=J;+1/Lg}, if the condition
|71 < 1is satisfied. With this modification, the change of
h;, becomes of order 1/L with respect to h;,. We assume
that the initial couplings take random values k /L with
k=—L,...,L. To avoid the ambiguity coming from
the zero local field, we add a small random threshold to
each hidden unit. This does not modify the results of re-
plica calculations. One period of checking every pattern
once is called a session. After obtaining the solution, we
do the Monte Carlo simulation (MCS) to do the average
over the solution space.
We have studied ¢, and g, which are defined by

9.= 3> S Ji/(NN,), (25)
MC Jj

=3 [2 Jy; /N ]Z/N , (26)
Ij \MC

where N; means the number of MC configurations that
satisfy the solution condition and ¥ )- means the sum-
mation over them. For finite temperature, N, is smaller
than the number of MC steps. Let us describe the param-
eters of our simulations. We have chosen (K,M)=(3,5)
and L =8. The number of LAA sessions needed to find a
solution is about 10?~ 10* if we can obtain the solution.
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The MC average is performed with 10° MC steps and
temperature T=1/3.0. If the temperature is very low or
zero, the MC average is not effective, especially for
a~a,p. This means that g is very close to g, and we get
little information about the space of the solutions. If the
temperature is high, almost all configurations are out of
the space of the solutions. With T=1/3.0, we found
that about 10-30 % of the MC steps are in the solution
space.

Figure 6 shows the numerical results of g; and 7. For
a<a,r, the results of the numerical simulation are
slightly larger for 7 and smaller for g, than the replica re-
sults for g and g, yet the agreement seems to be good ex-
cept near the AT point.

For a>a,r we should be careful to compare the nu-
merical results with the RSB theory, since the space of
the solutions is divided into many subregions. If the
configuration of the couplings diffuses only within each
subregion, our numerical value g corresponds to g, of the
replica theory. This situation is realized by zero tempera-
ture. In our simulations, the temperature is rather high
and we have observed many nonsolution configurations
in the MC steps. We also know that m is close to 1 for
a~aust. As discussed above, this means that there are
many subregions of similar weight. Thus we suppose that
the coupling configuration diffuses among many subre-
gions and the contributions to § from the same subre-
gions are small. For this reason, we suppose that our nu-
merical results for g correspond to g, rather than g, of
the replica theory. In Fig. 6, g stops increasing at some
point between =% and £ and the sample fluctuation
becomes quite large for o> 2. This implies that the
structure of the space of solutions changes drastically be-
tween these a. This agrees with the replica theory which
predicts the AT instability at a=1.6. For a > £, the de-
viation from the RSB results is rather large. We suspect
that it is due to the finite size effect, yet there is a possibil-
ity of more steps of RSB in the replica theory.

VI. DISCUSSION

We have studied the two layer perceptron with discrete
synaptic couplings. The behavior of order parameters for
large L is similar to the continuous models, yet our model
does not allow the large value of couplings, as discussed
in the single layer model [11], and is different quantita-
tively from the spherical constraint case. For K = w0, as-
suming large L and small Ag,, we studied the most singu-
lar terms of the saddle point equation, giving the relation
as<VInL. The numerical study of the saddle _point
equation reveals that Ag, is not so small and ag/VInL is
a weakly increasing function of L. Entropy from the
one-step RSB theory was also studied, giving results very
close to the RS results. We suspect that the further intro-
duction of RSB steps will not alter the results strongly.
This point is an open question.

For both K =3 and «, we found that the order of a,
and ag changes at rather small L =2-4. There appears a
RSB region for a smaller mesh 1/L. We expect a similar
property for moderate K. This situation is quite different
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from the infinite range spin glass model, in which we can
understand the structure of the configuration space by
cooperative flips of Ising variables [14]. In this respect, it
will be interesting to study the relation between L and the
number of steps of RSB required to give a stable replica
theory. We should note that at least another one step of
RSB should be introduced because of the negative entro-
py for a>aggsp). Finite temperature formulation may
be required if there is no solution at all.

Figure 4 shows the a dependence of the entropy for
L=8. It is illuminating to consider how this figure
changes when L changes. As L increases, the entropy of
each K increases like InL for small a. For large a, how-
ever, the K =1 and 3 cases have upper limits of a beyond
which the entropy is negative for any L. This upper limit
is 2.0 for K =1 and about 3.0 for K=3 [7]. For K=,
because of the relation ag < V'InL, entropy is expected to
become positive for any a if L is large enough. For
moderate K, we expect that a, increases like VInL and
tends to the upper bound InKX [3] for finite L.

We have used the LAA that is modified for discrete
couplings to obtain the solutions. It works well for
moderate a. In general, it is very difficult to study the
solutions numerically, especially for a close to the critical
capacity a,. An exhaustive search would be the most re-
liable method, but it would require an enormous amount
of computer time. The observations about Fig. 4 given
above suggest an interesting possibility about the space of
the solutions. Imagine that one studies the system with a
mesh 1/L and does not find any solution but instead finds
some configurations which have a very small cost func-
tion. Then a question arises: To obtain the solutions
with a smaller mesh, say 1/2L, are the configurations ob-
tained above good starting points for obtaining the solu-
tions for a mesh 1/2L? We suppose that it is natural to
expect that two configurations correlate strongly.

In this paper, we did not discuss the committee
machine with overlapping inputs. When hidden units
share inputs, inner products of couplings among hidden
units appear as order parameters in the replica theory.
However, it was shown that these order parameters are
negative and of order 1/K in the RS ansatz [8]. This is
reasonable because, to achieve large capacity, hidden
units will tend to project input signals onto planes which
are as different as possible. Thus, in the large K limit, we
expect that our arguments will not be strongly modified
for the overlapping input case, at least in the RS ansatz.

Finally, we want to comment on the internal represen-
tation of the system. Having the hidden units, the two
layer perceptron has many internal representations,
o, =sgn(h,;), for a given pattern £]. For a<a,r, the
space of the solutions is connected and a set of o,; will
change gradually when couplings change gradually. The
average [o,,], where [ ] is the average over the solution
J, gives some idea about the fluctuation of the internal
representation. For the RSB, the space of the solutions is
divided into many subregions. Corresponding to each
subregion, a pattern will have different internal represen-
tations that are not continuously connected. In the
framework of replica theory, the correlation among
different internal representations is given by
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Cop=3il0,11.[0,1]g/K. This value will have hierarchi-
cal structure if replica symmetry breaks hierarchically.
This is an interesting possibility of perceptrons with the
hidden units.

APPENDIX A

In this appendix, we discuss the g;— ¢ and L-large lim-
it of the RS saddle point equations. In the g, —¢ limit,
1—Q tends to (2/m)V'2(1—q/q,). Using the approxi-

mation H(X)~1__ for X <0 and
H(X)~exp(—1X?)/(V2nX) for X >0, F and E in (20)
are reduced to the form
g 172
T | 94 1
F=aq— |— _—
a 5 |2 (Aqd)3/2 , (Al)
T L
2E+F=a— |-— — . (A2)
8 | 2g,4 V' Agq,

To discuss the g; and g in (20), it is convenient to start
with the last term of (14), which is given by

Inz= [ Dulnf(2E+F,VFu),

S exp— 2E +F
J

(A3)

fQRE+F,VFu)= J2+VFuJ .

(A4)

If the change of a term in this sum under the change
J—J+1/L is small enough, we approximate this sum by
the integral

2E +FJ2+\/F ul .

fQRE+F,VFu)=L f_lldJexp—

(AS)

The largest contribution comes from the point
J=uVF /A if lu|<4/VF, J=1if u>A/VF and
J=—1if u<—A/V'F, where we denote 4 =2E+F.
Using these expressions, we obtain

+2I,VF +I,A+InL ,

(1= E
Inz=(1-21,)=" (A6)

where
=[ k

I, f ANF u“Du .
By differentiating Inz, we can obtain g; and q in terms of
A and F. The results are complicated functions of 4 and
r=A/V'F. If we assume that r tends to some constant,
we obtain the expressions in (22). To study the entropy,
we should go back to InV /N and express it by g, and
Ag,. Using (A2) and noting q4E +(1/2)gF =0, we ob-
tain

(A7)

Va

an/N——aC +f2(y)A 3/4

—+f (y)
\/AQd 1

0 o 1/2 +InL ,
94

(A8)

where y =\/ aV/Aq, and f,(y) are given by the integrals
I,. We can easily notice that this equation has the ex-
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tremum with the form a=a/V/ Ag,, where a is a con-
stant given by the extremum condition. Using this a, we
finally obtain

S=—Ba*+InL , (A9)
where
_ Ll C — 1 — 1
B=—aqa a fl(‘/a)?—fz(‘/a)m
—f;(\/E)%] . (A10)
APPENDIX B

In this appendix, we discuss the saddle point equation
of the one-step RSB theory. As in Appendix A, we con-
centrate on the limit Ag;=g,;—q,—0. From (18), we

1 m
E=—a— — = —
g | Hi ™ vV/gi—q} 4
S He2 1 4
2 1_—Ql HA T ’\/qz—q% 94 B1)
1 He o 1
F,=a T—= ,
1 1-0, f H, w \/qz—q%
2
1 Hz > 1
F T—= ,
0 l_Q1 f Hi T ‘/qZ_q(Z)
1 m
=fDu-—P;fDu,f J*,
1 m
= [ Du [ Duyfm0)?, (B2)

qOZfDu# [fDu,f’”(J) ]2 ,

obtain and

J
g F,—qoFy)="> fDT——HAfDT,H’"lnH——fDTlnHA+ fDu—fDu,f'"ln 2fDu P, (B3)
where

_1dH
= H™ , = Hm 1
H,=[H"DT,, Hy=[ T
TheAquqd

H,=H(Xy))+J, Hz=J,, Ho=J,,

where X,=1/0,T /v 1—Q, and

=7 (\/21TX)k mexp—Lc(V/QoT+v'Q,— Qo T, 2DT; .

Here we assume that the ratio c =m /(1 —Q,) has a finite
limit. This means m goes to O like 1—Q,. With this as-
sumption, H , tends to some constant, Hy <1/1/1—0Q;,
and Hc «1/(1—Q,). The singular parts of E, F|, and F,,
are therefore

1 1 1

E=a |e +e
"(1-0,% Vg, 1-0,
1 1
F =a — (B6)
! fl (1_Q1)2 ‘/Aqd
1
Fy= —_—,
0 afO(l__Ql)z

where e, e,, f|, and f, are constants which depend
upon ¢, qo, g4, We should note that the singular part
of 2E+F, is proportional to a\/Ag,/(1—Q,)?
~a/ V/Agy, which is less singular than either E or F,.

=DT,, Hc=[H"™?

—¢,—0limit of H ,, Hp, and H are given by

dH

v DT,, P={f"Du,,

(B4)

(B5)

To discuss the behavior of Ag,, it is convenient to
study the last term of (18), which we denote Inzzgz. Re-
peating the same analysis as was done for the RS case, we
obtain

lanSB=—’—il~fDu In(a +b, expm\/ﬁu +b,exp
—mV Fyu)+InL , (B7)
where, setting A =2E +F, and AF,=F,—F,,
R — —
=f +Du,expi—-”i(\/Fou +V AF u;)?,
R_ 2 4
b1=fR°° Dujexp—imA+mV/ AF u, , (B8)
+
R_ —
=f Du,exp—lmA—m\/AF,u, ,

where R, =(+ A4 — \/Fou)/\/AFl In the Ag; —0 lim-
it of Inzggg, we only need to estimate the largest term in
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the logarithm. Using (B6) and m <1/ Ag,, we estimate APPENDIX C
~ 1 In this appendix, we present the formula for ¥ ; and
~V me 1 _ » We p 144 Yp
Fo~Va, A Fy V'Aq, , md~a, used to evaluate a,y. The details of the derivation are
the same as were done in [7] (see also [15]). In the follow-
mV'F,~Va/Aq 14 4_ ~VaAg}”, (B9)  ing equations, order parameters are implicitly assumed to
V'F be the RS solutions for a given a. For both K =3 and o,
— v in (24) is given by
V'F,

Vi ~Ag;"™ . vs= [ Du{J*)—(J)??, (o))
1

To identify the largest terms, we should make some_as- where ( ) means the average (21). 7 is formally given
sumption on a. A natural assumption is a <1/ Aqy, by

which is _suggested by.the RS_theory.‘ Herg we only s}}ow Yp=Yo+ K—1)y,, (C2)
the consistency of this solution. With this assumption,

R reducesto =4/ V'F 1» which is some constant, and a, where

b, and b, =b, are estimated to be the largest values of K

the integrants. Thus the largest term in Inzggg is propor- Yo~ f I1 Doy =27, T+ ()",

tional to a/m +constVa/(Ag)*m), or 1/(V Aggm). =1

Using the relation g,E +3mqoFy+3(1—m)q,F; =0 and

] — . K
setting m mO\/Aqd,we obtain 7’1=f I Dtl((Y1J’2)2_2J_’1J—’2Y1J’2+(J71 )2(}—,2 )
=1

In¥/N=—aq— B8 _ —
moV Mgy yfys is given by [(y(y,,)'DW/[DW, where the
weight DW, which comes from each replica, is given by
a a
+ \/A—_ +constZ3—/4 ,
Ul
UP d DW= ﬁ dyldhl exp 2 l(q q)y2
= —2447q)yi
or — +InL , (B10) =1 2 7
Agy
where Cpgg= [DTIn(1/H ). In the second line, we +iVgty,—iyh
omitted the nonsingular coefficients. Either case gives
the relation @ < 1/1/Ag,. Thus the dominant a depen-
dence in InV/N is a? which leads to a<VInL for X0 |3 sgn(h) | . (C3)
Sgrsg =0. Finally, using the relations (B9), we can check !

that the relations m <1/ Ag, and a < 1/1/Aq, are con-

sistent with the relation (B3), which, with (B2), will give Using these formulas for K= «, we obtain the leading
the constants c, g,, and g, for the Ag; —0 limit. contribution to Ky p as

J

KYP ’

L2 4 (g, 4 2] [—Q (T*W2)+2

172
- — 9 3
1-0 qg_qz m \/qd2—q2 T 1—-Q [ 1—-Q 1-0 ’ (TW )T+<W4)T

(C4)
where W=H'(X)/H(X) with H'(X)=—exp(—1X?)/V2rand ( - - )y means [ --- DT. For K=3, Ky is given by
(94—4q)(ga—29)
(gg+q9)qy+2q)

where (---), means [ ---[[}-,Dt, and W,=H'(X;)/H(X,), 3,=H,H,/3, and =,=H,H;/3, where
2=H1H2+H1H3+H2H3_2H1H2H3.

Kyp=—03 g SA=5 W, + (=3 )W), +uz2s2wew?), | (Cs)

T (gu—q) | qat
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